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AIMst ract

‘1’hc majority of software engineers resist the usc of the currently available cost models. One
problcm  is that the mathematical and statistical models that are currently available do not
correspond with the mental nmdcls of the software engineers, ]n an earlier JP1. funded study
(1 lihn and IIabib-agahi, 1991) it was found that software engineers prefer to use analogical or
analogy-like techniques to ctcrivc  six and cost estimates, whereas current CIiR’s hide any analogy
in the regression equations. ]n addition, the cummt]y  availab]e  mode]s depend  upon information
which is not available cluring  early planning when the most important forecasts must be made.

‘1’hc work repor(ed  here is the first step in defining the mental models software enginem  use to
forecast effort and size. Protocol analysis (a technique for converting self reported narratives
(verbal protocols) into data) and probability transition matrices are used to capture and model the
processes used by software forecasters. ‘1’hcse models then can be used to determine the structure
of software costing methods, tools and databases which software engineers actually will be willing
to u se.

“J’his paper presents a summary of the results of me port ion of a J 1’1. internally funded research
task to study the costing process and parameters used by internally recognized software cost
estimating experts. The results of the analysis include: the demonstration of a rigorous data
collection and analysis technique; the identification of a core set of well defined costing activities,
and the identification of several hypothesized basic software forecasting mental models.

1.0 in t roduc t ion

Software cost, size and schedule forecasting is a very complex task requiring the prediction of an
inherently stochastic process while incorporating many variables with varying degrees of
confidence in their fidelity. It is well documented in the cognitive psychology (Slovic,  1982)
literature that the way that the human mind deals with complexity is to develop a mental model
which is a simplification of objective reality. Statistical and mathematical models are very similar
in that they also are simplified models of reality. 1 lowever,  the mathematical nmlels  that are
currently available neither correspond nor easily integrate with the mental models of the software
mgi  nems. 1 n a recent survey it was found that 11% or fewer of software engimers  used formal
~}’l<s either as their primary or secondaly methoc]  whereas 8’7% reported using some form of
analogical comparison (1 lihn and Habib-agahi,  1991). It is important for both to be readily
available, as it has been shown that more accurate forecasts are produced from a 50-50

‘I:hc rcsearcl~”described  in this publication was carried out at the Jet Propulsion 1,aboratcmy,
California Institute of l’ethnology, under  a contract with the National Aeronautics and Space
Aclministration.



combination of expert judgcmcnt (mental model) and statistical moctel.(Bunn  and Wright, 1991)
‘1’his paper reports the. preliminary work in identifying and examining cmgineers’ forecasting
processes, or mental models. It presents the methodology whic}l  has been developed to collect and
:inalym  data obtained from verbal self-repor[s. Results from applying the analysis methods to data
from a previous study show the power of the mcthoct and a]so gives a few prc]iminary resu]ts.

13xisting forecasting tools or models which support analogy-based reasoning either are highly
structured, simplifying reality by limiting the application domain, or are so flexible that the user
musl provide a structure thus providing his own simplification. The Software Engineering
1.abmatory  (S1{1.) at Goddard Space Flight  Center (GSFC) has developed the Software
Management Environment (SM13). This resource model provides analogical cost estimates based
upon an extensive history of Flight Dynamics Software Systems, where the estimator selects
components of one of the three basic designs that are used for l;light  Ilynamics  Systems. This
approach has proven to be quit successful, Martin Mariet a developed an analogy-like software tool
for usc by the Air Force, and the Institute for Systems Analysis has developed Costlixpert for C2
and C3 systems. The Small Business Innovative Research program (SBIR) funded a software size
estimation tool which demonstrated that an automated tool could estimate size at Icast as well as
human estimators. This was tested cm software in the COSMIC database. Although the SBIR
sizing tool dicl predict size well, it fell into the classic trap of providing a classification scheme that
was too foreign for potential users. ‘1’hese ancl other systems have demonstrated that analogy-
based forecasting tools are feasible for solving portions of the estimation problem for narrow
clomains.  During the past few years ES PR1”l’ under the MIXM  Al I > Project has funded research on
cost forecasting and metrics tools. Commercially these are sold under the name IN’I:E~M by
VO1 .MAC, a Netherlands based company. ‘l’here are several modules which support analogy type
forecasting: Analogy Based Estimation (ABH) (Corbet  and Kirakowski, 1992),  Hxpericnced  Based
Ilst imation  (1 IRE) (Cowcleroy, 1992) and a similarity function.

SLlch narrow-clcmain  applications of ana]ogy-base.d forecasting take advantage of the simplification
of reality introduced by the domain. In order to develop tools and databases which are not domain
specific, we need to examine the forecasting method, or process, used by the engineers. This will
allow us to idemtifv  the mental mocessintz  elements which are used across manv domains. ‘l’his  is
what wc call the f&ecaster’s “njemtal  mdcl”. An appropriate research method ~or identifying the
clcmcnts  of software forecasters mental models  are those USCC1 in cognitive psychology. While
cognitive psychology has been used to stucly  programming, hll~~~ar~-cotllpllter  interaction and
design behavior (Ackerman ancl Tauber, 1990) it has receiveci little application in the analysis of
forecasting behavior. A variety of useful forecasting practices arc in use and are important to
capture if a formal process is to be ultimately proposed and be acceptable to software engineers.
‘1’he two preliminary attempts to develop such mental models of the forecasting process
cbcumented  in the literature, by Vicinanz,a et. al. (1991) and I lowarcl (1992), arc discussed in the
next section.

2 . 0 . Existing Mental Models of Software Forecasting

Figurc  1: Simplified Model of Cognitive Process for Software Forecasting

Figure 1 provides a context for a discussion c)f forccastin~  mental rnodcls. Based upon previous
ex~cricnie  a forecaster stores in fomat  ion in memory. A;the same time a forecaster &ol;es a
mental mode] (Simon, 1959) of how to combine the information in order to use it effectively. ‘l-his



mental model is a simplification of reality allowing the forecmtcr to reduce complexity and not be
overwhelmed by cognitive overload.

“1’his  mental model of how information is combined can be represented by a sequence of activities
or cvcmts which are re.pcatable. Some of the sequcntiality  is inherent in the model, e.g., when a
decision must be made. However, some of the scqucntiality  is an artifact of most data collection
techniques. “l’he activities are abstractions that ccmcsponcl  to the cognitive components.
“1’hcrefcx-e,  to document this mental model requires cleterminirlg the set of activities and their
corresponding activity sequcncc.

‘1’he two previous attempts to identify the mental models of software forecasters both present
interesting insights. I lowever, they have some methodological ancl analytical problems.

Vicinanz.a et al completed an exploratory study of the methods used by experts. ‘1’hcy had five
respondents who ranked a series of cost drivers and then cstimatecl the development effort for 10
projects. “1’hey categorized the forecasters’ methods by four categories: algorithmic initial
condition, algorithmic effort estimate, analogical initial condition, and analogical effort estimate.
I~or a method to be algorithmic the forecaster had to mention ancl use productivity figures. For a
method to be analogical the forecaster had to mention a reference project. Four of the estimators
used an algorithmic approach and only one used analogy. Vicinanz.a et al propose a logic flow
(mcnta] model)  for algorithmic ant] analogical forecasting(sce Figure  2 for the analogy model),
(iivcn their simple categorization scheme it is unclear how they clerivcd  their mental model. other
prob]ems  are that the experimental design rcquirccl that the engineers use COCOMO ancl function
point descriptors, neither of which may have been natural to them; and the tem~s used in their
mental model are neither goals nor the vocabulary that are commonly used by software engineers.

Howard reports the results of two surveys cm software cost estimation practices for standard
i nformat ion systems such as a bank transaction system. Approximate y SO observations were
collected using a survey form “J’welve observations were collected using semi-structured face to
fmc interviews based upon a case clescription which the subjects were given before the interview.
“J”hc objective was to develop a recta-model of the mental processing steps which estimators follow
to support research on how cost estimates are developed in group settings. A very high level model
with about 20 possible steps is proposed based upon cognitive processing theories. For an
example of the mental moc]cl for the “bottom up” process see I;igure 3. interestingly, aggregation
is never mentioned even though “functional breakdown into components” is explicitly shown.

l’he model proposed is intuitively appealing. l-lowever, t}le respondents provided quite generic
responses describing how they normally do cost estimates. FIoward  reports this is because the
case example was found to be too poorly defined. Verbal reports of this type are well known to
lead to biased and very likely inconsistent results (s&e Wicson  and Simon , 1984).

I Ioward provides some interesting insights on analogy and “fuzzy” actions. She finds that analogy
can be applied at any of the steps as a check on the cost forecasting process, Forecasters make
intuitive leaps (fuzzy actions) especially with respect to how they transition from “read user
clcmands”  to developing a simplified model of the system and the incorporation of residual factors
into their forecast. An example of a resiclual  is adjusting for clifferences  in development process.
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Figure  2 : Abstraction of Analogical-
Estimalion Slralegy  from Vicinanza  ct al
(1991)

in both of the papers described above the bases by which the proposed software forecasting mental
models have been derived is not explained, I loward is following some basic cognitive psychology
techniques, but it is not clear that they were derived by a repeatable analysis. A significant problem
from the perspective of identifying a more detailed picture of the underlying mental model is that
most of what distinguishes an expert from a novice is in how they generate and “factor residuals”
or, in other words, incorporate their cost drivers and adjustment factors. “l’his element of the
model needs to be developed in greater detail in order to determine what processes, data and tools
should  be developed.
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Figure  3 : A Bottom lJp  Approach to JXimation  from
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Ikm the analysis of the existing work we are now better able to identify a more rigorous
methodology which combines the use of Protocol Analysis with h4arkov Processes. What is
needed  is:

(1) a very systematic way by which a finite set of well defined costing activities are
icknt ificcl;

(2) a well defined mapping of the actual verbal expressions to the costing activities
(this provides the vocabulary and documents in a repcatab]e  way how the mental
model was constructed);

(3) mathematical and/or statistically based techniques by which the mental models
arc identified.



3 . 0  Mctho(lology

‘1’wo basic methods arc used in the collection, derivation and analysis of the data, Protocol
Anal ysis (Ilricson  and Simon, 1984) and the techniques associated with Markov processes
(Phillips et al, 1976).

Protocol Analysis is a data collection and analysis technique used to convert unstructured and sm~i-
structured verbal responses (verbal protocols) into data describing cognitive processes. ‘l’he verbal
protocol method is ideally suited to the task of learning what mental models experts apply to cost
forecasting. lJsing Protocol Analysis, forecasters are allowed to actually estimate in their own
domain using their own vocabulary yet still provide repeatable, domain independent information.
‘l’his data collection technique will be used in the intcr~~iew  portion of the study.

‘l’he Protocol Analysis technique was used to perform the secondary analysis of an existing data set
to demonstrate its feasibility for identifying forecaster’s mental models. Therefore, only the data
analysis part of the Protocol Analysis technique is reported on here. The most important step in the
data analysis is the construction of a scoring taxonomy which captures all the relevant
characteristics of the different mental models. ‘1’his taxonomy can be refined as the clata is collected
and anal yzecl but all verbal reports must be scored in the same manner. ‘l”he current analysis
provides an initial scoring taxonomy for analyzing the clatti to be collected. The reliability of the
scores is greatly improved if at least two different persons score the reports inclependentl  y.
Differences are resolved, yielding a refinement in the categories; this may require that all responses
be rc-scored using the new set of categories.

Once the verbal protocols have been convermd into data, a method  for constructing the mental
models  is needecl. Because a significant portion of each forec:ister’s  sequence of activities is clue
to individual clifferences, which are presumably distributeci over the population, the summary of
the mental moclels over a group of engineers can be viewed as a stochastic process. While there is
an underlying structure that is consistent over groups or at least subgroups of forecasters, the
manner in which forecasters walk through this structure varies. “l’he process can be represented by
the probabilities of transitioning  from one activity to another. ‘l’he derivation of these probabilities
is greatly simplified if it is assumed that the transition from state i to state j is independent of the
sequence of steps followed to get to state i. in other words future states are independent of the past
and all that one need know is the current state to derive the transition probabilities to the next time
period,

‘1’he assumption of time independence is being made for this analysis of the existing data and is not
expected to hold when more detailed data is collected. This assumption is a strong one because it
is expected that when a forecaster uses analogy or a Cl 11< there would be a specific sequence or
sub-sequence of steps followed. For example, with a CIIR a typical sequence might be estimate
size, estimate cost driver values, estimate cost by applying CI{R. Analysis of transition
probabilities conditional on the time steps indicates that even for the existing data dependence on
short sub-sequences of history exists, Ilowcvcr,  for short processes with initial and absorbing
(te.tminating)  states, stationary one-step transition matrices provide a reasonable initial description
of the respective processes (Papoulis, 1991).

4.0 Sample I)cf’inition and Background information

The following brief overview of JPL is meant to provicle the proper context to understand the
survey data. JPL is an FFRDC run by the California Institute of “1’ethnology under a government
contract with NASA. As a national laboratory, it performs researc}~ and development activities,
primarily the development of robotic spacecraft for interplanetary studies. In addition, a portion of
J}’] .’s budget is supplied by non-NASA organizations such as the IIepartment  of Defense,



‘1’he n~cdlocis used to estimate costs differ depending upon the required reliability. A “Class A“
estil~~ate  isther~~ost  rigorotls,  at~daforIl~al  revicwis  re(l~lire(l.  For Class  Aestin~ates,
model-based and other inctepcndent  estimates are supposecl to be obtained. However, most
estimates are producecl by a bottom-up exercise which may involve as many as 25 persons for the
software activities portion of each task. Since bottom-up or grass roots estimates are the main
process used for major JPI. projects, a survey was conducted of the technical staff th:tt  actually
performs the lowest level estimates during the summer and fall of 1989.

‘1’he original purpose of the survey was to study the ability of software engineers to estimate effort
ancl size given an architectural design document. In addition, the survey included a brief
description of the typical approach each used to estimate. Since data collected in this manner is not
appropriate e for Protocol Aria] ysis, any conclusions drawn from this secondary analysis of the data
arc tentative. ‘1’he main purpose in attempting to rc-analyze the olcl survey data is to identify the
linguistic units, to develop a prototype scoring taxonomy, and to investigate the appropriateness of
different types of statistical analysis,

Over 185 software engineers were contacted for participation in the original survey. Of the 185
contacted, over 100 were identified who estimate effort, size and/or cost for software tasks. of
these, 83 were willing to complete the questionnaire on current software cost estimation practices.
Of these, 28 responses provided sufficient information for use with the current analysis. For a
(lctailcd  discussion of how the original clata  was collected see} lihn and I Iabib-agahi  (1991 ).

‘1’ables  1 and 2 provide a summary of the basic experience of the respondents includwt  in this
study. The data presented shows that the average person has substantial experience and makes
estimates one or two times per year. On average the participants have approximately 16 years of
experience working on software tasks and ten years making cost estimates, Eight  of the 15 total
years have been spent with managerial responsibilities (cognizant engineer or higher). This reveals
a substantial amount of experience that is being used for c&t forccas~ing.

Table 1: Summary of Respondent
ICxpericnce

Table 2: Summary
of Estimation

of Frequency

Stanc18rd
Type of Mean I)cviation
Experience

Software
I;xpcricmce

Managerial

Estimation

(years)

16

8

10

(years)

8

5

7

Standard
Estimate h~can * Deviation

(months) (months)

h’lost Iwccrlt 6 9
Second h’lost  IWcnt 14 13

~’bird Most Recent 24 16

* Number of months from date of
interview.



S.0 Analysis

5.1 I)efinitions  of Activifics

Vicinanzi  and IIowarcl’s work indicate that there arc only a few basic forecasting activities which
arc used by forecasters, sometimes repeatedly and in varying sequences. Such activities constitute
an abstract vocabulary that can be used to describe the forecasting process. ~’he activities and their
definitions were derived from the literature, JPI. experiences documented in 1.essons 1 earned, and
the personal costing experiences of the authors. All of this was modified by the data available in
the verbal protocols to maximize the scoring of the linguistic units into one and only one scoring
category, “l’able 3 contains the list of software forectistillg activities used for this preliminary
analysis and their definitions. Note that any sub-activities which have been identified so far are
specified in the definitions. Appcnclix A contains the mapping of the vocabulary in the verbal
protocols to these activities,

‘] ’he level of granularity of the activities determines the information obtainable from analysis of the
fore~asters’ activity sequences. An activity set defined at too coarse a granularity can not
distinguish between sequences and all protocols will appear identical. An activity set defined with
to much detail, at too fine a granularity, makes every protocol appear unique. I ]ence identifying
the right granularity, or level of abstraction, is crucial.

The existing data is at a fairly coarse granularity. Sometimes verbal protocols at this level map into
more then one activity. l’he term analyze requirements is a very complicated activity which oecw-s
freqmmtly  in the protocols, I Iowever,  from a cognitive perspective the main purpose of anal yzing
the requirements is to develop a representation of the software system. A key component of this
represmtation  is to identify and encode the characteristics of the software system. ‘l”his  is the
attribute ic]entification  activity. Attributes are used in a variety of ways; when using analogy,
attributes are applied as discriminators to identify similar tasks, and when using CER’S they are
applied as multipliers or cost drivers. Aggregation was the only activity which at tirms was
inferred from the context of the protocol, A number of cases occurred where decomposition was
mentioned but an aggregation step was not explicitly statecl.  It was assumed that since the
objective of the cost estimate was to forecast the total effort that estimates of pieces had to be
cvcntual]y  aggregated. Note also that verification was not included as one of the activities.
Verification is seen as executing one or several of the software costing activities inc]udcd in the
current activity taxonomy. I Ience,  it is assoeiateci with a different level of abstraction which
groups a number of activities or defines a specific sub-sequence. This suggests that at the next
higher level of abstraction a forecasting life-cycle could be identified.



‘l’able 3: IIypothctical  Sofiware Cost IJorccasting Activities

Rcquircnlcrrts T“hc obtaining or retrieval of information.
Identification
(1<1) Kcy vocabulary words arc read rcquircnm.n~s, talk to cxpcr~s, review rcquircmcn[s,  and obtain

rcquircnncnts,
Attrilrute Attributes arc key aspects of a task which arc used in forming the systcm rncntal  model and arc also
identification used as analogy discriminators and cost drivers. This is onc of the main products of the analysis of
(Al) the rcquircmcnts.  Al is generally cic.scribed by the basic activity that was undertake.n with the result

thal precise attributes are rarcl y spccificd  at this poin[.  ‘1 ‘hcse consist of product and process
attribute.s.

Kcy vocabulary words are identify, un(lcrs[anrl,  analyze, and include.
l)ecomposition l“he breaking down of a software cnti[y (s ystcm,  subsyslc.m,  etc.) into smal Icr and simpler pieces.
(1)11) ~’hc types of dccomposi[ion  which have so far been identified arc:

functional,
WBS,
ncw vs inhcritcll
requ ircmcn  Is.

Key vocabulary words are breakdown (functions), idcnti  fy sub-tasks, develop (W Bs)
Estimation (MS) T’hc prediction of future cost  and other key projc.ct  management dimensions. The main items

forccaskxl  arc;
schcdulc
size
effort
dollars

IiS can EC further divided by Lypc of tcchniquc used:
analogical

expert judge.mcnt
explicit analogy

algorithmic
rules of thumb
CERS

Key vocabulary words arc usc (analogy , rule of thumb), estimate (SIXX, effort), and cost.
Attribute The explicit usc of the systcm attributes to discriminate bctwccn systems for purposes of analog~
Application comparison or as COSL drivers when using an algorithmic approach. Identification primarily dc+cnds
(AA) upon specific mention of a[lribu[c.

While there is lCSS homogcncily  in the vocabulary some common phrases are adjust, use (fog
fac[or),  add (chan~c,  fog factor, etc.), multiply.
I’hc combination of forecasted values associated with the systcm picccs  produced by dezomposit=

Ag~regation
(A(;) Key vocabulary words arc add-up and run SRM (J PI, rcsourcc management tool)
A{ljuslments Multipliers used indcpcndcnt  of the systcm  being costc.d. LJsually applied at a higher lCVC1  then
(AD) attributes. Consist of adjushncnts  for purposes of

risk
scaling
bias(crror)

Kcy vocabulary word is add pcrccnt,



S . 2  l)ata Sumrmry

“1’he data consists of 28 verbal  protocols. The number of steps ranged from 4 to 11. ‘l’able 4 shows
the number of steps for each verbal protocol; the most likely number of steps is 7, the average
number of steps is 8. ‘l’he distribution is bimodal,  l’his arises because some verbal protocols
contain mom then one sequence of estimation activities. ‘l”he additional estimation activities support
verification or an estimate such as size which was used in a subsequent effort activity. Those
verbal protocols with only 4 or 5 steps are almost certainly due to a lack of verbalization of the
mental model; therefore these observations were di scarclccl  from the data set when deriving the
mental models re.ported in Section 5.6.

‘l’able 4: Frequency Count of the Number
of Steps in Rach Verbal l’rotoco]

Number  of Number  of Percentage
Steps in obscrva-
Estimation tions
Sequence
4 3 11%
5 2 7%
6 3 11%
7 7 25 %
8 3 11%
9 6 21 ‘%
10 2 7%
11 2 790

‘liable 5 contains a summary of all of the responses by activity and sub-activitv.  The table was
constructed by scoring each recogni  z,able lin-guist  ic uhit in the-verbal protocol~by their pre-definecl
mapping to an activity. These were then summed over all observations. ‘l’here are more or fewer
ticks per activity than the number of verbal protocols (28) because the engineers did not always
execute every activity while others were repeated multiple times, The distribution of activities is
relatively unifom around 12% except that the number of times an estimation activity was
mcnt ioned is high (31%) and references to adjustments were relatively low (7%). The fact that
estimation is high is parl]y due to a lack of articulation of the other activities and that the main focus
of the survey was software cost forecasting. l’hercfore these results do not imply that engineers
spend 2-3 times the effort performing estimation activities compared to other activities, I Iowever,
looking at the sub-activities within estimation, engineers at JP1. are more likely to use expert
juc]gment  ant] rules of thumb or informal methods than formal forecasting methods. The small
number of reported adjustment activities, especially related to risk adjustments, probably reflects an
engineer’s tendency to hide risk in a variety of amorphous adjustments, for example, assuming a
higher average wage rate for labor.



Table 5: Summary of Responses by Software Forecasting Activi(y

FActivity Namber  of I’ercentage I’crcentage  by hlajor
I’irncs Rrportcd Activities.——

Requirements 27 13 13 1
I identification I I I I

Attribute 11
identification

Not Specified 20 10
Producl 2 1 <
Process o

l>ecumpositiorr 17
No[ Specified 6 3
l;unc~iOnal 12 6—
WIN 6 3
Ncw/Olct 8 4
Rcaui remcnLs 3 1 i

I llstinlatirrn I I I 31 I
I Not Snccificxt I 8 14 I I
I I 24 I 1

Jufigc.nmrt
Iixplicit 11 5
Analogy
Rules of Thumb 17 8
cI~R 6 3

Attribute 9
Application

Not Specified 3 1
Pr(xluct 15 7 i

1 1 1

t- PC[me.m ‘3 1 -1

I Aggre~ation I 25 I 1’2 I 12
A{l.iustments 7 4

I Not Specified I 2 I 1 I
Risk 6 3 --l

I Bias I 1 1 I
Scalinc 4 I 2 “ - i

t
. . 1 1 1

‘1’otal 209 100 100 ---i

5.3 Analysis of l)iffercnces  in the Distribution of Activities

Given the small sample size one way to split the data is bctwccn  the lnformaticm Systems L>ivision
and all other technical divisions. The information Systems Division main objective is the
development of ground based software for NASA and non-NASA sponsors. The other divisions
develop software in support of one main objective and in general only work for NASA. ‘l’here are
18 information Systems Division observations and 10 observations from other divisions. The
summaries are displayed in Table 6 for all of the identified activities and in Table 7 for main
activities only. Bawd upon a chi-sc]uare test the over all distributions arc not statistically different
even at the 10% level, I.ooking at only differences of 570 or greater it appears that the lnfomation
Systellls  l~ivkiOn reports fewer estimation activities, specifically the usc of expert j~ldgement  and
rules of thumb, and reports virtually no explicit risk a(ijustmcnts.



“1’able 6: Summary of the Pcrccntage  Number  of Responses by Forecasting
Activity for the information Systems Division Compared to the Rest of the
l)ivisions

~tivity I information Systems I other Divisions (%)
—

I I D iv i s ion  (%) I
I Reqoiremcnts I 14 I 11

lrlentification
Attribote

—

)dcntification
Not Spwificd 10

—
8

]’I’OdllCt
—

1 (1
l’rocc.ss o 0

I l)ccom~osition I I
14 10

Functional 15 18
Wm I 3 I

—
3

NcAv/OM 5 —1
Reaaircnmnts o 3

I lt~firnaf  ion I I

F-N& Snc.iticd
. . . . . . . . I I

6
—

o
Expert Jn(igcrncnt 10 16
IixpliciL Analogy 6

—
3

Rale.s  of Thumb 6
—

14
_ CER I 3 I 3

Atlribote
Al}r)lication I I

Not Spccificd I 2 0
Product 8

—
5 —

I Process 11 12

I Aggregation I 11 I 14
Ad.iustmcnts

Not Spccifid I o I 3
Risk

—
1 6

~ Scaling I 3 I o —
I T o t a l I 100 I 100

Table 7: Perccntagc  Number of Responses by Major Activities for the
information Svstems ])ivision Comt)arecl to the Rest of Divisions.
Activity Information Systems Other Divisions (%)

I)ivision  (70)
Requirements 14 11
Identification

Attribote Identification 11 8 i\ ,
l)ecomposition 17 15

l~stimation 31 36
Attribotc Application 11 7 1. .

Aggregation I 11 14
Adiostments 5 9 7

t
., , 1

Total 100 100 7



“1’he differences in the estimation activity are significant as shown by ‘l’able 8. In Table 8 the
cstil~~atioI~ activities  v`ercgrotlpcd byw'llcthcr  t}leywerc  tostlpport: anintcrmccliate  estimatesuch
as SI.OC; cffortcstimation,  wllctllcr  arlirltcll13ccliate  estilll;itc u~aspcrfor[llcd ortlot;  ora
verification estimate. The percentages shown are normalizcc] for the estimation activities only. A
chi-square test produced a score of 7.89 with 2 degrees of freedom which is significant at the
2.5% level. l’his is primarily due to a greater reliance on intermediate estimates such as sire anti
scheclu]e  by the, other divisions. Also note that there is rclativelv  little time sl>cn( on verification.
in fi~ct, cmiy  7 out of 28 verbal reports mcntioncc] verification. “

,

Table 8: Perccntagc  h’umber of Reportecl Activities
by Estimation Goal for the information Systems I)ivision

Compared to the. Rest of the I)ivlsions

lktimate information Other Divisions
Type s@!nls (%)

Divlslon (%)
lntermccliatc 14 44
Ii ffort 67 43
Verification 19 13
Total 100 100

S.4 Summary of Activities over Time

When the verbal protocols were scored the activities described were recorded in the orcter  they
were reported. Table 9 presents a summary of the main activities reported in time sequence. I’his
should  be viewed as a snapshot of where each respondent was for each time period. There is no
information as to where they have been nor what activity they will perform next, I Iowever, we
can say something about the costing behavior on average. IJirst, if the activities ate listed in
approximately the order they are performed then the matrix should be partially diagonal, which it
is. ‘1’he lower left hand corner and upper right hand corner consist of zeros. This means that there
are indeed some activities engineers perform primarily at the beginning of the process and some
primarily at the end, while in the midd]e  of the process activities tend to be more jumbled. This is
consistent with the forecaster individual differences that are expected of the forecasting process.
on the other hand, there are some well defined modes for many of the time periods, which gives a
sense of what activities are being performed over time, at least “on average”.

A few general observations can be made based on the summary data, Steps 1 and 2 are dominated
by requirements and attribute iclcntification. Starting with step 3 the main activities bifurcate; w}~ilc
there is a major moclc at decomposition there is a secondary mode at estimation. “l’his pattern is
maintained in step 4 except  estimation is now the main mode. Step 5 becomes uni-modal  at
estimation and th& the pkess becomes bi-mods] again splitting
aggregation. Af(cr step 8 most of the protocols have terminated.

6etwecrl  estimation ancl



Table 9: Summary of Major Forecasting Activities over ‘1’ime

T i m e  S e q u e n c e

Activity 1 2 3 4  S 6 7 8 9  1011

Requirements 2.1 1 2 00 2 1 0 0 () o
Idcn(ification

Attribute
identification 2 18 1 0 0 0 1 0 0 0 0

Decomposition 5 4 1 4 7 3 2 0 0 0 0 0

Estimation 0 5 8 1 0 1 5 8 9 7 2 1 1

Attribute
Application 0 0 2 5 5 3 3 2 0  ]()

Aggregation 0 0 1 4 2 6 5 3 5 1 0

Afljustmcnts o 0 0 202 1 1 3 1 1

Iota] 28 28 28 28 25 23 20 13 10 4 2

‘1’his static view of the data suggests there may exist a few well defined forecasting processes
passing through the gates defined by the major and secondary modes. Figure 4 presents a
dynamic view of the data, In this view the modes identified above arc virtually undiscernible.
I Iowevcr,  examining repeating activity behavior indicated that distinguishing attributes of similar
sequc.nccs were those that had mul t iplc dccomposit  ion steps and those with multiple separate
estimation steps. The stationary probability transition matrices were calculated to examine the
dynamic behavior of the proceksm  for each of these groups.
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l’igurc 4 : Graphical Summary of Time Scquencc  of Activities



S.5 Transition Matrix Calculation

‘1’he probability transition matrix is a matrix of the form

‘PI] P12 P13 . ● ● P18

. . .

P81 . . . m
— 1

where

and pij is the probability of moving from activity i to activity j.

‘1’o compute the probability transition matrix for the stationary case requires simply counting the
number of times that an engineer reports doing activity j after activity i. For example, assuming
the order follows the list in Table 3 then plz is the probability of performing requirements
identification followed by attribute identification. Each time this was observed the count for plz
was incremented. once this was complctccl  all the rows were normalized to sum to 1. “I”hese
probabilities can then be used to conslruct  an activity flow diagram where the activities arc the
nodes and the branches are the transitions which can be assigned the probability computed as
described above, ‘1’his is what we call the graphical representation of the forecasting mental model.
‘1’hc basic structure of the graph captures that which is consistent across forecasters while the
probabilities and multiple branches capture the mndom element of the process.

S.6 Analysis of Mental Modc]s

Mental models can now be represented by activity flow diagrams giving transition probabilities for
the flows. Models are illustrated for engineers who used single decomposition and single
estimation steps (Figure 5), multiple decomposition and multiple estimation steps (Figure 6),
those reporting analogy as an estimation activity (Figure 7) and those which do not report using
analogy (Figure 8). Figures 5, 7 and 8 define orthogonal sub-populations.

I;igure 5 shows the activity flow diagram for verbal protocols with single decomposition and
single estimation steps. The sample size is 4. “l’his is the most simple of the mental models and
will be used as a base for describing the rest. F~or this group all respondents perform requirements
identification, attribute identification, decomposition ancl estimation as the first four steps. I%r
step 5 there is a 43% probability of repeating the estimation activity, a 29% chance they will go to
attribute application and a 14% chance they will either “jump” to the adjustment or aggregation
activity. If they jump activities then the next step terminates the protocol, Upon moving to
attribute application it is equally likely that the next step will be to terminate, repeat attribute
application or do an effort adjustment. The mental model displayed in Figure  5 corresponds to a
simple straight forward task for w}lich  the fundamentals of costing 101 apply with little
modification,

l:igure  6 reveals a much more complicated process consisting of multiple decomposition and
estimation steps. The sample size is 5. The main differences arc the appearance of 6 feedback
loops and termination from the estimation and attribute application activities. As labeled, the new



tcrminatimz  branches arise due to verifictition  of t}~e estimate. ‘l’he two feedback 100IJS to
cstinxition-irom  the aggregation ancl acljustme.nt  activities arise due to verit7cation  esdmates and
also intermediate estimates. The new branches are consistent with several expected scenarios.
one example is: estimate size, aggregate, estimate effort, apply attributes, then clevelop  new
estimate. tc) verify and repcwt results. ‘1’wo other new branches appear to be associated with the use
of explicit analogy: the “jump” from identify attributes to estimation and the repeat estimation
branch. ‘l’he jump makes sense considering that when using analogy it is expected that attributes
would be applied as discriminators to iclentify  similar tasks in preparation for the estimation
activity. Most likely there is an apply attributes activity that was not verbalized. This is partially
supported by the data which shows that attribute, ickmtification  occurs 11% of the time while
attribute application was reporkxt only 9% of the time,. The estimation repeat loop most likely
reflects the fact that explicit analogy was most frequently used to compute the verification estimate
not the original estimate.

‘1’o further explore the impact of analogy on the costing mental model the data was clivicle.d,
excluding the single decomposition, single estimation group, into two sub-populations, one using
analogy , Figure 7, and the other which did not usc analogy, ~~igure  8. l’he sample size for the
analogy group is 9 and 6 for the non-analogy group. ‘J’he differences in the figures are displayed
in bold in Figure 7. The main differences due specifically to analogy are: the jump from attribute
identification to estimation, the jump from decomposition to attribute application with an 80%
probability of looping back to estimation, and the greater probability of sequential repetition of the
estimation step. ~’he other flows designated as different are most likely due to other causes such as
the usc of multiple decomposition or verification. The implications of these results are that the use
of explicit analogy has an effect on the whole mental model and therefore analogy needs to be
understood in the context of the whole process. Also we can now propose some hypotheses
which can be tested on the next data set.

6.0 Summary ant] Conclusions

The data analysis of the last few sections lets us begin to identify where in their cost and size
forecasting process software engineers can best usc supporting methocls, tools, anti data, and what
kind of methods, tools and data they ncccl.  For example, the static analysis of this data would
suggest supporting expert judgement.  I rooking at the transitions indicates that there are often
multiple sequential estimation steps. Supporting methocls and tools should provide smooth
transitions amongst these.

Previously published analysis of this data showed that for experienced forecasters, those who
forecast frequently (at least every 6 months) on the average forecast effort 12% high, whereas
those who forecast less frequently (at greater than 6 month intervals) cm the average forecast effort
44%3 low. This suggests examining the mental mode]s for those activities and transitions most
dependent on memory.

1+’inal]y, the idiosyncratic nature of the incliviclua]  protocols inclic:ttes that supporting rncthocis  and
tools ncccl to capture and record the steps followed and information used by the forecaster. “l’his
will provide a record of the assumptions and context within which the estimate was made, and
improve the quality of updated estimates.

Thus we have demonstrated a viable process for capturing and analyzing the mental models
software engineers use for cost ancl size forecasting which can provide requirements for
supporting method, tool, anti clatabase specification.
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Activitv Definit ion Vocabulary (Linguistic Units)
Reqwrements -Ihe obtammg or remeval of Read requirements
Identification (RI) information. Key linguistic units are: Talk to experts

read p!k [0 ex~~ and .S mmsor~ to understand requirements beuer
UIk to for new Darts talk to exw rts-to try to understand the sub-tasks
obtain talk to my group

obtain budget information
Some more com Iicated linguisticF produce requirements because do not exist (AI)
units which imp y several events but Study
are prim@y  encoded as ENT are: Review requirements

rewew requirements
study
produce requirements

Attribute Atmbutes are key aspects of a task Identify standard
Identification (AI) which are used m forming the system Identify environment

mental modeI and are also used as identify parts that should be prototy@
analogy discriminators and cost identify complexity
drivers. This is one of the main ‘ identify size
products of the anaIysis  of the identify scope
requirements. AI is generally identify fmctionah!y
described by the basic  activity that identify personnel quality
was undertaken with the restdt that include programmer experience
precise attributes are rarely specified include reliability rela[e  to some existing model
at this

P
int.  At this point two tvpes requirements analysis

of attri  utes have been identified: analyze requirements
product and process. taLk to experts and sponsors LO understand reuu ircments  Iwcr

for new pals talk to experts to trv to un(!erstmd  the subwiks
Key vocabulary words are: consider similar projects

identify, what are the differences
understand, how much inheritance
analyze, for inherited s/w use simikr past applications
include. make assumptions

take the baseline
Some more com Iicated linguistic

F
tind analogy

units which imp y several events but produce requirements beewse do not exist (ES)
are primarily encoded as AI are:

relate to some existing model
take ihe baseIine
make assumptions
find analog



Appendix A Continued

Uecomposltlon 1’he breaking down of a soitware Breakdown to (SC 1 evel
(DE) entitv (system, subsy~tem, etc.) into break it into modules

smaI~er and sunpler  pieces. breakdown to primitive requirements
for new SIW breakdown into known and unknown pieces

One of the most fundamental ways Identify subtasks needed to compIete  task
that we deal with complexity is to DeveIop  preliminmy  design
break a probIem down into smaller develop s/w Wbs
pieces so that each piece can be develop WBS
anaIyzed separately. DE occurs develop functional sub-tasks Functional Breakdown WBS to small/medium Ievcl
throughout the costing process. The separate inheritance from new
types of DE described in the current for new parts look around for amIogy
protocols are: assume design environment

WBS+, functional design
functional, HjW S/W Architecture
new vs inherited, WBS by functionality
requirements. bottom up from component IeveI

Key vocabtdary words are:
breakdown
identity sub-tasks
break It into
develop

In some cases the product of the
breakdown is mentioned without
mentioning the activity itself.
Therefore It is necessary to know the
different tyys of software break-
downs.



Appendix A Continued

Utlmat!on (~s) 1 he predxXon  of future cost and use analogy to est ellort
other key pro”ect management

+
use analogy

dimensions. he mam items use best judgement
forecasted are: use rule of thumb to estimate effort at moduIe  level

schedule use expert judgement  to est effort
size use expert programmers to est effort
effort used basic COCO?VIO
dolhirs use rules of thumb and past experience to est effort

me rules of thumb to adjust SLOC for unknowns ???
FO can be further divided by type of use analom and ratios of sameness for inherited s/w use sim ihr past appl icalions
technique used: use rules of thumb to get SLOC/Requirement

~~ogic~ use expert judgement  to convert requirements to effort
expert judgernent for new s/w unknown pieces use rules of thumb
explicit analoe~ known pieces use formal ardogy

~gorifimic use analogy to est effort
rules of thumb sit with programmers use analogy to estimate effort
CERS estimate effort

estimate SLOC
Key vocabukuy  words arre: for similar parts est effort

use (analogv, rule of thumb) for new pats est SLOC/  IO SLOC/day
estimate ($LOC, effort) estimate effort based upon 8 SLOC/day
cost experts make estimates based on seat of panE

for each component estimate complexity
for each component estimate SLOC by complexity
cost each sw moduIe
compute equivalent new SLOC
industry standard for $/LOC
multiply by doIlars/SLOC
determine scheduIe of activities and assume 1 moduIe/month  for 3 peop!c
for new parts Iook  around for analogy

DSN runs around 10-12 SLOC/day
operations is 11,000/ month
get cede effort and schedule from CDE’S(EN)
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Appendix A Continued

Vlultxpilers used independent ot L9e
&stem being costed. Usually appfied
at a h@er IeveI then attributes.
Consists of adjustments for purposes
of

risk
scaling
bias(emor)

Key vocabulary word is add percent.

add’/0 tor ns!c
use 50V0 safety factor
for new arts do same but add fog factor

2!’add 10- 0% based upon 70 of new code
mukip~y by 5 to get total effort
add a percent to get total effort
use section cost rates
double rate to add cm, test, doc etc.
add 10WIO for test and doc
add 5070 for requirements and design
add 20(YZ0
see how well estimate before
see how well estimated before and use fog factor

to adi estimate could be 10070
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Appendix A Continued

Att rlbute ~ se tog factors : language, personnei  qwilny
Application (AA) The explicit use of the system put on hysical  limitations

attributes to discriminate between 1old tas used assernbly  new is high level Ianguage
systems for purposes of analogical complexity is the same
comparison or as cost drivers when more COTS
using an algorithmic approach. personnel quaIitv
Identification primarily-depends upon personnel availability
specific mention of attribute. assign complex parts to more competent persons

adjust  based on cost drivers
At this point two ty s of attributes

r
manpower quality.

have been identifie  : product and manpower avaiIabdity
prwess. schedule constraints

degree of flexibility
While there is less homogeneity in the use andouy  to map the requirements to simih rdsks
linguistic units  some common multi Iy Fog factor to get sub-task effort
phrases are: [add c ange for

adjust new work
use (fog factor) modified code
add (change, fog factor, etc.) Ievel  of language
mu!tipIy use arIalogy ancl ratios of sameness

assume experience is average or above
for new parts do same but add fog factor
for each component estimate complexity
personnel qualitv determines size of fog factor

Aggregat~on (A~) T-he combmanon  of forecasted vaiues a
‘ d  f

u etfort for al1 modules
associated with the system pieces add a 1 sub-tasks to get effort
produced by decomposition. add them up

add up ieces
Key vocabulary words are: Radd up LOC

add-up add up SLOC
SR.Nl (JPL resource SRM to get doh-s

management tool) bottom up from component Ievel


